

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Data Structures (20MC9102)

Course & Branch: MCA

Regulation: R20

Year & Sem: I-Year & I-Sem

UNIT –I BASIC CONCEPT, LINEAR LIST

1	a)	What is an Algorithm?	[L2][CO1]	[4 M]
	b)	Write an Algorithm for sum of two numbers.	[L1][CO1]	[8M]
2	a)	What is a Data Structure? Explain its advantages.	[L2][CO1]	[4M]
	b)	List and explain various types of Data Structures.	[L4][CO1]	[8M]
3	Fin	d the O(n), $\Omega(n)$ and $\theta(n)$ values for the functions $f(n)=3n+2$ and $g(n)=n$.	[L1][CO3]	[12M]
4	Exp	plain Space Complexity Performance with example.	[L5][CO1]	[12M]
5	Dis	cuss about algorithm with an example algorithm and program.	[L6][CO1]	[12M]
6	a)	Describe an Array? With example.	[L2][CO2]	[6M]
	b)	Explain the representation of an array.	[L4][CO2]	[6M]
7	a)	Explain Linear Data structure with examples	[L2][CO1]	[6M]
	b)	Explain Non Linear Data structure with examples	[L2][CO1]	[6M]
8	Ana	alyze and write a program to store a set of values of same data type into a single	[L4][CO2]	[12M]
9	var Exp	blain the following i) Big-Oh ii) Big-Omega iii) Big-Theta	[L2][CO2]	[12M]
10	Dis	cuss about Asymptotic Notations with their types.	[L6][CO2]	[12M]

UNIT –II

LINKED REPRESENTATION, STACK & QUEUE

1	a)	Write an algorithm to insert an element at the end of doubly linked list.	[L3][CO5]	[6M]
	b)	Write an algorithm to delete an element at specified position in single linked list.	[L3][CO5]	[6M]
2	Exp	blain different ways for insert elements into a Single Linked List with example.	[L5][CO5]	[12M]
3	Dis	cuss about Circularly Linked List with operations.	[L6][CO5]	[12M]
4	a)	What is linked list? What are the different types of linked list?	[L1][CO5]	[6M]
	b)	Explain the advantages of linked list over arrays.	[L2][CO5]	[6M]
5	a)	Write an algorithm to insert an element at beginning of circularly linked list.	[L1][CO5]	[6M]
	b)	Write an algorithm to delete an element at end of doubly linked list.	[L2][CO5]	[6M]
6	a)	What is a Stack? What are the operations that perform on a stack?	[L1][CO6]	[6M]
	b)	What is a Queue? What are the operations that perform on a Queue?	[L1][CO6]	[6M]
7	a)	Explain the implementation of stack operations using arrays.	[L4][CO6]	[6M]
	b)	Explain the implementation of stack operations using linked list.	[L4][CO6]	[6M]
8	Wh	at is an expression? Explain various types of expressions with example.	[L2][CO6]	[12M]
9	a)	Analyze and implement queue operations using arrays.	[L4][CO6]	[6M]
	b)	Analyze and implement queue operations using linked list.	[L4][CO6]	[6M]
10	a)	Convert the expression $(5 + 6) * (6 - 5)$ from infix to postfix	[L2][CO6]	[6M]
	b)	Write the steps for evaluating postfix expression.	[L2][CO6]	[6M]

UNIT –III

TREES & MULTIWAY TREES

1	a)	Explain BFS Tree Traversal with an example.	[L2][CO4]	[6M]
	b)	Explain DFS Tree Traversal with an example.	[L2][CO4]	[6M]
2	Exp	plain Binary Tree with their types and representation.	[L2][CO4]	[12M]
3	Ide: exa	ntify different cases to delete an element in BST with an algorithm and mples.	[L3][CO4]	[12M]
4	Dis	cuss about $B - Tree$ with their operations.	[L6][CO4]	[12M]
5	a)	Develop an algorithm to insert elements into Binary Search Tree.	[L4][CO4]	[6M]
	b)	Develop an algorithm to search element in Binary Search Tree.	[L4][CO4]	[6M]
6	Wr	ite the algorithms for inserting elements into B+ Tree with example.	[L2][CO4]	[12M]
7	Lis	t out various terminologies of tree. With example.	[L1][CO4]	[12M]
8	Coi & 5	nstruct Binary Search Tree for the following nodes 43, 10, 79, 90, 12, 54, 11, 9	[L3][CO4]	[12M]
9	Wr	ite the algorithms for deleting elements from $B+$ Tree with example.	[L4][CO4]	[12M]
10	a)	Define Multiway Tree. What are the different Multiway trees?	[L1][CO4]	[6M]
	b)	Differentiate B-Tree with B+ Tree.	[L4][CO4]	[6M]

UNIT –IV

SEARCHING AND SORTING

1	a)	What do you mean by searching? What are the types of searching?	[L1][CO4]	[6M]
	b)	Differentiate various searching techniques.	[L4][CO4]	[6M]
2	a)	Explain Linear Search with an algorithm and example.	[L2][CO4]	[6M]
	b)	Create a program to demonstrate Linear Search.	[L6][CO4]	[6M]
3	Exp	plain about Hashing with an example.	[L5][CO4]	[12M]
4	a)	Explain Binary Search with an algorithm and example.	[L2][CO4]	[6M]
	b)	Write a program to demonstrate Binary Search.	[L3][CO4]	[6M]
5	a)	Discuss Space and Time Complexity for Linear and Binary Search.	[L6][CO4]	[3 M]
	b)	Distinguish between Linear Search and Binary Search.	[L4][CO4]	[9M]
6	a)	Explain insertion sort with an algorithm and example.	[L2][CO4]	[3 M]
	b)	Write a program to demonstrate insertion sort.	[L3][CO4]	[9M]
7	a)	Explain bubble sort with an algorithm and example.	[L2][CO4]	[5M]
	b)	Develop a program to demonstrate bubble sort.	[L4][CO4]	[7M]
8	a)	Explain selection sort with an algorithm and example.	[L2][CO4]	[3 M]
	b)	Create a program to demonstrate selection sort.	[L6][CO4]	[9M]
9	a)	Develop an algorithm for Quick sort with example.	[L3][CO4]	[6M]
	b)	Develop an algorithm for Merge sort with example.	[L3][CO4]	[6M]
10	Dif	ferentiate various sorting techniques with time complexity.	[L4][CO4]	[12M]

UNIT –V

GRAPHS & GRAPH ALGORITHMS

1	a)	Define Graph. List out various graph operations?	[L2][CO4]	[4M]
	b)	What are the various applications and properties of Graphs?	[L1][CO4]	[8M]
2	a)	Explain BFS Graph Traversal with an algorithm.	[L2][CO4]	[3M]
	b)	Explain BFS Graph traversal with steps for the following Graph.	[L5][CO4]	[9M]
		(A)(B)(C)_		

- **3** What is a Graph? Explain various Graph terminologies. [L4][CO4] [12M]
- **4 a**) Explain DFS Graph Traversal with an algorithm. [L2][CO4] **[3M]**
 - **b**) Explain DFS Graph traversal with steps for the following Graph. [L5][CO4] [9M]

5	a)	What is minimum –cost spanning tree?	[L1][CO4]	[4M]
	b)	Discuss Prim's algorithm with example.	[L6][CO4]	[8M]
6	a)	Discuss how to represent Graph storage using Adjacency matrix.	[L6][CO4]	[7M]
	b)	Briefly explain about Adjacency List with example.	[L2][CO4]	[5M]
7	Exp	plain Dijkstra's algorithm with an example.	[L4][CO4]	[12M]
8	Exp	plain about shortest path problem with an algorithm and example.	[L2][CO4]	[12M]
9	Exp	blain in detail about various minimum cost spanning tree algorithms.	[L4][CO4]	[12M]
10	Dis	cuss and compare various graph traversals.	[L6][CO4]	[12M]

Prepared by: Mr. J. S. ANANDA KUMAR Assistant Professor/MCA SIETK